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Neurosurgical Innovations Advance  
Safe Resection of Difficult Brain Tumors

G liomas as a group represent the most common 
primary brain tumor in adults. Surgery plays 
a critical role in the multimodal management 

of gliomas with respect to tissue diagnosis as well as 
symptomatic relief from mass effect.  Moreover, the 
combination of surgery, chemotherapy, and radiation 
therapy has been shown to confer a survival benefit for 
patients with malignant glioblastoma multiforme, a very 
aggressive glioma.1 In addition, a series of studies has 
demonstrated a correlation between extent of surgical 
resection and clinical outcome benefits in patients 
with gliomas.2-9 Accordingly, there is a drive toward 
neurosurgical innovations that promote the safe maximal 
resection paradigm.  

Rapid technological advances and refinements in 
intraoperative neurosurgical strategies have facilitated the 
goal of maximum and safe resections. The impetus toward 
minimally invasive neurosurgical intracranial techniques 
with respect to minimizing morbidity has been a driving 
force as well. In particular, image-guided stereotactic 
techniques have been extremely valuable in this endeavor 
by providing intraoperative neuronavigational capabilities 
for the neurosurgeon. Furthermore, recent advances in 
MRI diffusion tensor tractography have facilitated the 
acquisition and incorporation of critical white matter 
pathways onto neuronavigational plans, thereby providing 
the anatomical correlate and localization for critical 
pathways such as the corticospinal fibers for motor and 
optic radiations for vision.  As a consequence, minimally 
invasive brain tumor resections are now feasible for tumors 
in eloquent or even deep cortical locations that were 
previously deemed high risk, and hence nonresectable.

Modern stereotactic systems incorporate specialized 
optical detection systems for neuronavigation, and reflect 
a marked improvement from older systems that mainly 
generated coordinates within the brain based on the three 
cardinal planes (ie, sagittal, coronal, and axial).  The patient 
undergoes acquisition of a thin-cut, high-resolution MRI 
of the brain, which could also include functional MRI data 
for motor and language areas, if applicable.  The imaging 
data are then processed through an algorithm to generate 
a three-dimensional (3D), patient-specific model for that 
particular patient (Figure).  Three-dimensional navigation 
within the brain is then accomplished by integrating 
surface landmarks on the patient’s head with similar 
landmarks on the 3D-model generated from stored, high-
resolution CT or MRI scans.  The combination of optical 
detectors and a navigational probe permits pinpoint 
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localization of any point in space within millimeter 
precision in the brain relative to the patient and 
the model.  Incorporation of intraoperative MRI 
data taken during surgery can correct for any 
discrepancies or brain shift that typically occurs as 
a result of surgery.10-14 

For resection of tumors in noneloquent areas of 
the brain, neuronavigation without incorporation 
of functional MRI or diffusion tensor imaging (DTI) 
data is usually sufficient.  However, in patients 
whose tumors are within speech, motor, or visual 
areas, incorporation of functional MRI and white 
matter pathway data is very feasible, with the 
potential to minimize surgical morbidity.15,16

One technique of immense interest has been 
DTI tractography.  The technique examines the 
differential movement of water molecules within 
the brain between gray and white matter.  Since 
white matter fiber tracts are directional, there is 

a direction movement of water molecules within 
white matter.  Algorithmic processing of such 
directionality generates the fiber profile within the 
region of interest. Hence, during neuronavigation, 
the relationship of critical fibers and pathways is 
available (Figure).  DTI is especially valuable for 
deeper lesions where a transcortical trajectory 
is required. For instance, a trajectory that spares 
the corticospinal motor fibers is therefore 
desirable.  Moreover, DTI navigation data for 
deeper lesions have been shown to correlate nicely 
with intraoperative electrical stimulation data for 
corticospinal motor fibers, suggesting its role as a 
localization surrogate for white matter fibers.17-19   
In addition, other functional MRI data for speech 
or motor can be incorporated and visualized in 
real-time.  Lastly, a select group of patients might 
benefit from awake-craniotomy where patient-
dependent function can be assessed in real-time.

As we experience rapids advancement in MRI 
and optics, stereotactic neuronavigation will 
offer more surgical visualization capabilities 
for the neurosurgeon.  The ability to navigate 
around critical white matter fibers for resection 
of tumors will be markedly enhanced.  These 
advanced stereotactic techniques have already 
been incorporated at our comprehensive cancer 
center, where we encounter a significant number 
of tumors in critical areas of the brain. 
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FIGURE. This navigation screen picture shows a model, top left, generated from a high-resolution MRI. The tumor and 
associated pathway fibers and other MRI images are depicted in the accompanying three key projections. When the 
surgeon navigates with a probe on the patient, it is possible to see that location in real-time on all four images on the 
navigation screen.


